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Branching probabilities

We can write the matrix element squared for n + 1 partons in the small-angle

region in terms of that for n partons,

|Mn+1|
2 ∼

4g2

t
C F (z;ha, hb, hc) + non − singular terms|Mn|

2

where C is a colour factor functions F (z) contain the momentum dependence of

the branching probabilities.

After azimuthal averaging we obtain the splitting functions.

X

ha,hb,hc

Z

dφ

2π
C F (z;ha, hb, hc) = P̂ba(z);

where P̂ba(z) is the appropriate splitting function

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) .
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Parton branching - kinematics

pa = (Ea +
p2

a

4Ea

, 0, 0, Ea −
p2

a

4Ea

)

pb = (Eb, +Eb sin θb, 0, +Eb cos θb)

pc = (Ec,−Ec sin θc, 0, +Ec cos θc)

the kinematics and notation for the branching of parton a into b + c. We assume

that

p2
b , p2

c � p2
a ≡ t

a is an outgoing parton, which is called timelike branching since t > 0.

The opening angle is θ = θb + θc. Defining the energy fraction as

z = Eb/Ea = 1 − Ec/Ea ,

we have for small angles, t = 2EbEc(1 − cos θ) = z(1 − z)E2
aθ2

using transverse momentum conservation,

θ =
1

Ea

s

t

z(1 − z)
=

θb

1 − z
=

θc

z
.
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We consider first the case that all the partons a, b and c are gluons. There will be a

factor in the amplitude proportional to 1/t from the propagator for gluon a, and a

triple-gluon vertex factor

Vggg = gfABCεα
a εβ

b
εγ
c [gαβ(pa − pb)γ + gβγ(pb − pc)α + gγα(pc − pa)β ]

where εµ
i represents the polarization vector for gluon i. Note that here all

momenta are defined as outgoing, so that pa = −pb − pc. Using this and the

conditions εi · pi = 0,

Vggg = −2gfABC [(εa · εb)(εc · pb) − (εb · εc)(εa · pb) − (εc · εa)(εb · pc)] .

three gluons are almost on mass-shell, we can take their polarization vectors to be

purely transverse. We shall resolve them into plane polarization states, εin
i in the

plane of branching and εout
i normal to the plane

εin
i · εin

j = εout
i · εout

j = −1

εin
i · εout

j = εout
i · pj = 0 .
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For small θ, neglecting terms of order θ2, we have

εin
a · pb = −Ebθb = −z(1 − z)Eaθ

εin
b · pc = +Ecθ = (1 − z)Eaθ

εin
c · pb = −Ebθ = −zEaθ .

Note that every vertex factor is proportional to θ, which, together with the

1/t ∝ 1/θ2 from the propagator, gives a 1/θ singularity in the amplitude.

In the small-angle region

|Mn+1|
2 ∼

4g2

t
CAF (z; εa, εb, εc)|Mn|

2

where the colour factor CA = 3 comes from fABCfABD = CAδCD and the

functions F (z; εa, εb, εc)

εa εb εc F (z; εa, εb, εc)

in in in (1 − z)/z + z/(1 − z) + z(1 − z)

in out out z(1 − z)

out in out (1 − z)/z

out out in z/(1 − z)
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Gluon splitting function

All polarization combinations not given in the table are forbidden. Defining 〈F 〉 by

averaging F (z; εa, εb, εc) with respect to the polarization of a and summing over those of

b and c, we find that

CA 〈F 〉 ≡ P̂gg(z) = CA

»

1 − z

z
+

z

1 − z
+ z(1 − z)

–

where P̂gg(z) is called the unregularized gluon splitting function
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Soft enhancements and angular correlations

the enhancements in the matrix elements at z → 0 (b soft) and z → 1 (c soft) are

associated with the emission of a soft gluon polarized in the plane of branching.

the correlation between the plane of branching and the polarization of the

branching gluon. If we suppose that the polarization of gluon a is at an angle φ to

the plane then the function F becomes

Fφ ∝
X

εb,c

"

cos2 φ |M(εin
a , εb, εc)|

2 + sin2 φ |M(εout
a , εb, εc)|

2

#

= cos2 φ

»

1 − z

z
+

z

1 − z
+ 2z(1 − z)

–

+ sin2 φ

»

1 − z

z
+

z

1 − z

–

=
1 − z

z
+

z

1 − z
+ z(1 − z) + z(1 − z) cos 2φ .

The first three terms give the unpolarized result and the last gives the correlation,

which favours an orientation in which the polarization of the branching gluon lies in

the plane of branching. The correlation is quite weak, however: its coefficient

z(1 − z) vanishes in the enhanced regions z → 0, 1 and reaches its maximum at

z = 1
2

, where it is still only 1/9 of the unpolarized contribution.
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Dirac eqn. for massless fermions

The fermions involved in high energy processes can often be taken to be

massless.

We choose an explicit representation for the gamma matrices. The Bjorken and

Drell representation is,

γ0 =

 

1 0

0 −1

!

, γi =

 

0 σi

−σi
0

!

, γ5 =

 

0 1

1 0

!

,

The Weyl representation is more suitable at high energy

γ0 =

 

0 1

1 0

!

, γi =

 

0 −σi

σi
0

!

, γ5 =

 

1 0

0 −1

!

,

In the Weyl representation upper and lower components have different helicities.

Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν

in the Weyl representation γ0γi =

 

σi
0

0 −σi

!

. σ are the Pauli matrices.
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The Dirac eqns for the right- and left-handed components become,

 

p− −(p1 − ip2)

−(p1 + ip2) p+

!

u+(p) = 0,

 

p+ +(p1 − ip2)

+(p1 + ip2) p−

!

u−(p) = 0,

u+(p) =

2

6

6

6

4

p

p+
p

p−eiϕp

0

0

3

7

7

7

5

, u−(p) =

2

6

6

6

4

0

0
p

p−e−iϕp

−
p

p+

3

7

7

7

5

,

where

e±iϕp ≡
p1 ± ip2

p

(p1)2 + (p2)2
=

p1 ± ip2

p

p+p−
, p± = p0 ± p3.

In this representation the Dirac conjugate spinors are

u+(p) ≡ u†
+(p)γ0 =

h

0, 0,
p

p+,
p

p−e−iϕp

i

, u−(p) =
h

p

p−eiϕp ,−
p

p+, 0, 0
i

Normalization

u†
±u± = 2p0
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Interlude: spinor products

Introduce a bra and ket notation spinors corresponding to (massless) momenta pi,

i = 1, 2, . . . , n labelled by the index i

|i±〉 ≡ |p±i 〉 ≡ u±(pi) = v∓(pi),

〈i±| ≡ 〈p±i | ≡ u±(pi) = v∓(pi).

We define the basic spinor products by

〈ij〉 ≡ 〈i−|j+〉 = u−(pi)u+(pj), [ij] ≡ 〈i+|j−〉 = u+(pi)u−(pj).

The helicity projection implies that products like 〈i+|j+〉 vanish.

〈i + |j+〉 = 〈i − |j−〉 = 〈ii〉 = [ii] = 0

〈ij〉 = −〈ji〉, [ij] = −[ji]
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We get explicit formulae for the spinor products valid for the case when both energies

are positive, p0
i > 0, p0

j > 0

〈i j〉 =
q

p−i p+
j eiϕpi −

q

p+
i p−j e

iϕpj =
q

|sij |e
iφij ,

[i j] =
q

p+
i p−j e

−iϕpj −
q

p−i p+
j e−iϕpi = −

q

|sij |e
−iφij

where sij = (pi + pj)
2 = 2pi · pj , and

cos φij =
p1

i p+
j − p1

jp+
i

q

|sij |p
+
i p+

j

, sin φij =
p2

i p+
j − p2

jp+
i

q

|sij |p
+
i p+

j

.

The spinor products are, up to a phase, square roots of Lorentz products.

The collinear limits of massless gauge amplitudes have square-root singularities;

spinor products lead to very compact analytic representations of gauge

amplitudes.
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Branching probabilities

Consider the case where

pa = (Ea +
p2

a

4Ea

, 0, 0, Ea −
p2

a

4Ea

)

pb ∼ (Eb, +Ebθb, 0, +Eb)

pc ∼ (Ec,−Ecθc, 0, +Ec)

Thus for example

u†
+(pb) =

p

2Eb

»

1,
θb

2
, 0, 0

–

and

u+(pc) ≡ v−(pc) =
p

2Ec

2

6

6

6

4

1

− θc

2

0

0

3

7

7

7

5

Hence for polarization vectors εin = (0, 1, 0, 0), εout = (0, 0, 1, 0)

gūb†
+ γ0γ1 vc

− = g
p

4EbEc

„

1,
θb

2

«

 

0 1

1 0

! 

1

− θc

2

!

= −g
p

EbEc(θb − θc)
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−gūb
+γµε

pinµ

a vc
− = g

p

EbEc(θb − θc) = g
p

z(1 − z)(1 − 2z)Eaθ ,

−gūb
+γµε

poutµ
a vc

− = ig
p

EbEc(θb + θc) = ig
p

z(1 − z)Eaθ ,

and the matrix element relation for the branching is

|Mn+1|
2 ∼

g2

t
TRF (z; εa, λb, λc)|Mn|

2

where the colour factor is now Tr(tAtA)/8 = TR = 1/2. The non-vanishing functions

F (z; εa, λb, λc) for quark and antiquark helicities λb and λc are

εa λb λc F (z; εa, λb, λc)

in ± ∓ (1 − 2z)2

out ± ∓ 1

Summing over the polarizations we get

2
h

(1 − 2z)2 + 1
i

= 4(z2 + (1 − z)2).

There is a strong anticorrelation between the polarization and the plane

Fφ ∝ cos2 φ (1 − 2z)2 + sin2 φ = z2 + (1 − z)2 − 2z(1 − z) cos 2φ .
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Colour factors
The Bengtsson-Zerwas angle χBZ, defined as the angle between the planes

defined by the two lowest and two highest energy jets:

cos χBZ =
(p1 × p2) · (p3 × p4)

|p1||p2||p3||p4|
.

the figure shows the χBZ distribution measured by the L3 collaboration at LEP.

The curves correspond to the Abelian and non-Abelian QCD theories, and the

data exhibit a clear preference for the latter.
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Colour factors II
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Branching probabilities summary

Including color factors we obtain the unregulated branching probabilities.

P̂qq(z) = CF

»

1 + z2

(1 − z)

–

,

P̂gq(z) = CF

»

1 + (1 − z)2

z

–

,

P̂qg(z) = TR

h

z2 + (1 − z)2
i

,

P̂gg(z) = CA

»

z

(1 − z)
+

1 − z

z
+ z (1 − z)

–

.

CF = 4
3
, CA = 3, TR = 1

2
.

These are unregulated probabilities because they contain singularities at z = 1
and z = 0.
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DGLAP equation

Consider enhancement of higher-order contributions due to multiple small-angle

parton emission, for example in deep inelastic scattering ( DIS)

Incoming quark from target hadron, initially with low virtual mass-squared −t0 and

carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and

lower momentum fractions by successive small-angle emissions, and is finally

struck by photon of virtual mass-squared q2 = −Q2.

Cross section will depend on Q2 and on momentum fraction distribution of partons

seen by virtual photon at this scale, D(x, Q2).
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To derive evolution equation for Q2-dependence of D(x, Q2), first introduce

pictorial representation of evolution, also useful later for Monte Carlo simulation.

Represent sequence of branchings by path in (t, x)-space. Each branching is a

step downwards in x, at a value of t equal to (minus) the virtual mass-squared

after the branching.

At t = t0, paths have distribution of starting points D(x0, t0) characteristic of

target hadron at that scale. Then distribution D(x, t) of partons at scale t is just

the x-distribution of paths at that scale.
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Change in parton distribution

Consider change in the parton distribution D(x, t) when t is increased to t + δt.

This is number of paths arriving in element (δt, δx) minus number leaving that

element, divided by δx.

Number arriving is branching probability times parton density integrated over all

higher momenta x′ = x/z,

δDin(x, t) =
δt

t

Z 1

x

dx′ dz
αS

2π
P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

Z 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

Z x

0
dx′ dz

αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0
dz

αS

2π
P̂ (z)
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Change in parton distribution

Change in population of element is

δD(x, t) = δDin − δDout

=
δt

t

Z 1

0
dz

αS

2π
P̂ (z)

»

1

z
D(x/z, t) − D(x, t)

–

.

Introduce plus-prescription with definition
Z 1

0
dx f(x) g(x)+ =

Z 1

0
dx [f(x) − f(1)] g(x) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

Plus-prescription, like the Dirac-delta function, is only defined under integral sign.

Plus-prescription includes some of the effects of virtual diagrams.
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DGLAP
We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Here D(x, t) represents parton momentum fraction distribution inside incoming

hadron probed at scale t.

In timelike branching, it represents instead hadron momentum fraction distribution

produced by an outgoing parton. Boundary conditions and direction of evolution

are different, but evolution equation remains the same.
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Quarks and gluons

For several different types of partons, must take into account different processes

by which parton of type i can enter or leave the element (δt, δx). This leads to

coupled DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

X

j

Z 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) .

Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave

via q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

„

1 + z2

1 − z

«

+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]
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Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g).

Thus number arriving is

δD
g,in =

δt

t

Z 1

0
dz

αS

2π

(

P̂gg(z)

"

Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

#

+
P̂qq(z)

1 − z

"

Dq

„

x

1 − z
, t

«

+ Dq̄

„

x

1 − z
, t

«

#)

=
δt

t

Z 1

0

dz

z

αS

2π

n

2P̂gg(z)Dg

“x

z
, t
”

+ P̂qq(1 − z)
h

Dq

“x

z
, t
”

+ Dq̄

“x

z
, t
”io

,

Gluon can leave by splitting into either gg or qq̄, so that

δD
g,out =

δt

t
Dg(x, t)

Z 1

0
dz

αS

2π

h

P̂gg(z) + Nf P̂qg(z) dz
i

.

After some manipulation we find

Pgg(z) = 2CA

"

„

z

1 − z
+

1

2
z(1 − z)

«

+

+
1 − z

z
+

1

2
z(1 − z)

#

−
2

3
Nf TR δ(1 − z) ,

Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF
1 + (1 − z)2

z
.
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Using definition of the plus-prescription, can check that

„

z

1 − z
+

1

2
z(1 − z)

«

+

=
z

(1 − z)+
+

1

2
z(1 − z) +

11

12
δ(1 − z)

„

1 + z2

1 − z

«

+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) ,

so Pqq and Pgg can be written in more common forms

Pqq(z) = CF

»

1 + z2

(1 − z)+
+

3

2
δ(1 − z)

–

Pgg(z) = 2CA

»

z

(1 − z)+
+

1 − z

z
+ z(1 − z)

–

+
1

6
(11CA − 4Nf TR) δ(1 − z) .
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Parton distributions
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Solution by moments

Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation

means we can compute its form at any other scale.

One strategy for doing this is to take moments (Mellin transforms) with respect to x:

D̃i(N, t) =

Z 1

0
dx xN−1 Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

Z

C

dN x−N D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of

integrand.

After Mellin transformation, convolution in DGLAP equation becomes simply a

product:

t
∂

∂t
D̃i(x, t) =

X

j

γij(N, αS)D̃j(N, t)
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Anomalous dimensions
The moments of splitting functions give PT expansion of anomalous dimensions
γij :

γij(N, αS) =
∞
X

n=0

γ
(n)
ij (N)

“αS

2π

”n+1

γ
(0)
ij (N) = P̃ij(N) =

Z 1

0
dz zN−1 Pij(z)

From above expressions for Pij(z) we find, ( 1
[1−z]+

→ −
Pn−1

j=1
1
j

)

γ
(0)
qq (N) = CF

"

−
1

2
+

1

N(N + 1)
− 2

N
X

k=2

1

k

#

γ
(0)
qg (N) = TR

"

(2 + N + N2)

N(N + 1)(N + 2)

#

γ
(0)
gq (N) = CF

"

(2 + N + N2)

N(N2 − 1)

#

γ
(0)
gg (N) = 2CA

"

−
1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

N
X

k=2

1

k

#

−
2

3
Nf TR .
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Scaling violation

Consider combination of parton distributions which is flavour non-singlet, e.g.

DV = Dqi − Dq̄i or Dqi − Dqj . Then mixing with the flavour-singlet gluons drops

out and solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

„

t

t0

«γqq(N,αS)

,

We see that dimensionless function DV , instead of being scale-independent

function of x as expected from dimensional analysis, has scaling violation: its

moments vary like powers of scale t (hence the name anomalous dimensions).

For running coupling αS(t), scaling violation is power-behaved in ln t rather than t.

Using leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

„

αS(t0)

αS(t)

«dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

Flavour-singlet distribution and quantitative predictions will be discussed later.
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Combined data on F2 proton

HERA F
2

0

1

2

3

4

5

1 10 10
2

10
3

10
4

10
5

F
2
 

em
-l

o
g

1
0
(x

)

Q
2
(GeV

2
)

ZEUS NLO QCD fit

H1 PDF 2000 fit

H1 94-00

H1 (prel.) 99/00

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5
x=0.000102

x=0.000161
x=0.000253

x=0.0004
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x=0.0008

x=0.0013

x=0.0021

x=0.0032
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x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Now dqq(1) = 0 and dqq(N) < 0

for N ≥ 2. Thus as t increases
V decreases at large x and increases

at small x. Physically, this is due

to increase in the phase space for

gluon emission by quarks as t in-

creases, leading to loss of mo-

mentum. This is clearly visible in

data:
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Flavour singlet combination

For flavour-singlet combination, define

Σ =
X

i

(qi + q̄i) .

Then we obtain

t
∂Σ

∂t
=

αS(t)

2π

ˆ

Pqq ⊗ Σ + 2NfPqg ⊗ g
˜

t
∂g

∂t
=

αS(t)

2π
[Pgq ⊗ Σ + Pgg ⊗ g] .

Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution

equation for moments has matrix form

t
∂

∂t

 

Σ̃

g̃

!

=

 

γqq 2Nfγqg

γgq γgg

! 

Σ̃

g̃

!
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Anomalous dimension matrix as a function of N .

Rapid growth at small N in gq and gg elements at lowest order

ln N behaviour at large N in qq and gg elements

NNLO now known

Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± =
1

2
[γgg + γqq ±

q

(γgg − γqq)2 + 8Nfγgqγqg] .

Collider PhysicsLecture II: Parton branching and proton structure – p.33/40



Solution of lowest order DGLAP matrix equation

The reduced DGLAP equation can be written as

d

du

 

Σ̃(u)

g̃(u)

!

= P

 

Σ̃(u)

g̃(u)

!

where u = 1
2πb

ln
αS(µ2

0)

αS(µ2)

Define projection operators, M±

M+ =
1

γ+ − γ−

h

+ P − γ−1

i

, M− =
1

γ+ − γ−

h

− P + γ+1

i

,

where M±M± = M±,M+M− = M−M+ = 0, M+ + M− = 1 and

P = γ+M+ + γ−M−

The solution is

 

Σ̃(u)

g̃(u)

!

=
h

M+ exp(γ+u) + M− exp(γ−u)
i

 

Σ̃(0)

g̃(0)

!
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Momentum partition vs Q2

For second moment

O+(2, t) = Σ(2, t) + g(2, t) with eigenvalue 0 ,

O−(2, t) = Σ(2, t) −
nf

4CF

g(2, t) with eigenvalue −

„

4

3
CF +

nf

3

«

.

O+, corresponds to the total momentum carried by the quarks and gluons, is

independent of t. The eigenvector O− vanishes in the limit t → ∞:

O−(2, t) =

„

αS(t0)

αS(t)

«d−(2)

→ 0, with d−(2) =
γ−(2)

2πb
= −

`

4
3
CF + 1

3
nf

´

2πb
,

so that asymptotically we have

Σ(2, t)

g(2, t)
→

nf

4CF

=
3

16
nf .
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Asymptotia is approached slowly

The momentum fractions fq and fg in the µ2 = t → ∞ limit are therefore

fq =
3nf

16 + 3nf

, fg =
16

16 + 3nf

.

Scaling violation depends logarithmically on Q2.

Large variation at low Q2
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Gluon distribution
Large number of gluons per unit rapidity

The LHC is a copious source of gluons
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Growth of gluon at small x

Using the moments of the DGLAP equation we have that,

t
∂

∂t
g(N, t) =

α(t)

2π
γ
(0)
gg (N)g(N, t)

where the leading behaviour of the anomalous dimension is,

γ
(0)
gg (N) ≈

2Nc

N − 1
.

In this limit the solution for the moments of the gluon distribution is

g(N, t) = g(N, t0) exp

„

ξ

N − 1

«

,

where ξ is defined by

ξ =
Nc

π

Z t

t0

dt′

t′
αS(t′) =

Nc

πb
ln

„

ln t/Λ2

ln t0/Λ2

«

.
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Inverse Mellin transform
To return to x space we perform the inverse Mellin transform

xg(x, t) =
1

2πi

Z C+i∞

C−i∞

dN x−(N−1)g(N, t) ≡
1

2πi

Z C+i∞

C−i∞

dN g(N, t0) exp
h

f(N)
i

,

where ReC is to the right of all the singularities of g(N, t) and the exponent f is

f(N) = (N − 1)Y +
ξ

N − 1
,

with Y ≡ ln(1/x). In the limit in which both Y and ξ become asymptotically large, we

can estimate this integral by expanding about the saddle point of the exponential,

f(N) = f(N0) +
1

2
f ′′(N0)(N − N0)2, N0 = 1 +

r

ξ

Y
,

which gives, for the asymptotic solution,

xg(x, t) ∼ g(N0, t0) exp(2
p

ξY ) .

g(x, µ2) ∼
1

x
exp

s

4Nc

πb
ln

ln µ2/Λ2

ln µ2
0/Λ2

ln
1

x
, Nc = 3, b =

(33 − 2nf )

12π
.
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Recap

QCD at high momentum transferred is perturbative because of the property of

asymptotic freedom.

In the small-angle approximation, parton evolution can be represented as a

branching process from higher values of x

DGLAP equation predicts growth at small x and shrinkage at large x with

increasing Q2.

In particular, the gluon grows rapidly at small x.
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